12 research outputs found

    Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate

    Get PDF
    Osteogenesis imperfecta (OI) types VII, VIII and IX, caused by recessive mutations in cartilage associated protein (CRTAP), prolyl-3-hydroxylase 1 (P3H1), and cyclophilin B (CyPB), respectively, are characterized by the synthesis of overmodified collagen. The genes encode for the components of the endoplasmic reticulum (ER) complex responsible for the 3-hydroxylation of specific proline residues in collagen type I. Our study dissects the effects of mutations in the proteins of the complex on cellular homeostasis, using primary fibroblasts from seven recessive OI patients. In all cell lines the intracellular retention of overmodified type I collagen molecules causes ER enlargement associated to the presence of protein aggregates, activation of the PERK branch of the unfolded protein response and apoptotic death. The administration of 4-phenylbutyrate (4-PBA) alleviates cellular stress by restoring ER cisternae size, normalizing the p-PERK/PERK ratio and the expression of apoptotic marker. The drug has also a stimulatory effect on autophagy. We proved that the rescue of cellular homeostasis following 4-PBA treatment is associated to its chaperone activity, since it increases protein secretion, restoring ER proteostasis and reducing PERK activation and cell survival also in presence of autophagy pharmacological inhibition.Our results provide a novel insight into the mechanism of 4-PBA action and demonstrated that the intracellular stress in recessive OI can be tuned by 4-PBA therapy, similarly to what we recently reported for dominant OI, thus allowing a common target for OI forms characterized by overmodified collagen

    Mutations in SCNM1 cause orofaciodigital syndrome due to minor intron splicing defects affecting primary cilia

    Get PDF
    Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.This work was supported by a grant from the Spanish Ministry of Science and Innovation (PID2019-105620RB-I00/AEI/10.13039/501100011033)

    A novel homozygous mutation in FGFR3 causes tall stature, severe lateral tibial deviation, scoliosis, hearing impairment, camptodactyly, and arachnodactyly

    No full text
    Most reported mutations in the FGFR3 gene are dominant activating mutations that cause a variety of short-limbed bone dysplasias including achondroplasia and syndromic craniosynostosis. We report the phenotype and underlying molecular abnormality in two brothers, born to first cousin parents. The clinical picture is characterized by tall stature and severe skeletal abnormalities leading to inability to walk, with camptodactyly, arachnodactyly, and scoliosis. Whole exome sequencing revealed a homozygous novel missense mutation in the FGFR3 gene in exon 12 (NM_000142.4:c.1637C>A: p.(Thr546Lys)). The variant is found in the kinase domain of the protein and is predicted to be pathogenic. It is located near a known hotspot for hypochondroplasia. This is the first report of a homozygous loss-of-function mutation in FGFR3 in human that results in a skeletal overgrowth syndrome

    Mutaciones en FAM46A en un paciente con osteogénesis imperfecta

    No full text
    Resumen del póster presentado a la XI Reunión Anual CIBERER, celebrada en Castelldefels, Barcelona del 12 al 14 de marzo de 2018.Osteogénesis imperfecta (OI) es una enfermedad asociada a fragilidad ósea y osteoporosis, producida principalmente por mutaciones heterocigotas en los genes codificantes de las cadenas polipeptídicas de colágeno tipo I, COL1A1 y COL1A2. Asimismo, también existen otras formas recesivas y dominantes de esta enfermedad, las cuales se caracterizan por una alta variabilidad genética. Hasta la fecha se han descrito 19 loci de OI, cuya función está relacionada con el metabolismo del colágeno I; la mineralización de la matriz ósea; o la diferenciación de los osteoblastos. Aquí presentamos un paciente de origen egipcio con una mutación en homocigosis en FAM46A, un nuevo gen recientemente identificado como causante de esta enfermedad, y en cuya publicación ha colaborado nuestro laboratorio. FAM46A codifica una proteína perteneciente a la superfamilia de las nucleotidil-transferasas, pero su función molecular a día de hoy permanece desconocida. No obstante, existen evidencias, incluido un modelo animal generado por mutagénesis ENU publicado con anterioridad, que indican que FAM46A desempeña un papel esencial en el desarrollo óseo.Peer reviewe

    Biallelic truncating variants in MAPKAPK5 cause a new developmental disorder involving neurological, cardiac, and facial anomalies combined with synpolydactyly

    Full text link
    [Purpose]: This study aimed to identify the genetic cause of a new multiple congenital anomalies syndrome observed in three individuals from two unrelated families.[Methods]: Clinical assessment was conducted prenatally and at different postnatal stages. Genetic studies included exome sequencing (ES) combined with single-nucleotide polymorphism (SNP) array based homozygosity mapping and trio ES. Dermal fibroblasts were used for functional assays.[Results]: A clinically recognizable syndrome characterized by severe developmental delay, variable brain anomalies, congenital heart defects, dysmorphic facial features, and a distinctive type of synpolydactyly with an additional hypoplastic digit between the fourth and fifth digits of hands and/or feet was identified. Additional features included eye abnormalities, hearing impairment, and electroencephalogram anomalies. ES detected different homozygous truncating variants in MAPKAPK5 in both families. Patient-derived cells showed no expression of MAPKAPK5 protein isoforms and reduced levels of the MAPKAPK5-interacting protein ERK3. F-actin recovery after latrunculin B treatment was found to be less efficient in patient-derived fibroblasts than in control cells, supporting a role of MAPKAPK5 in F-actin polymerization.[Conclusion]: Our data indicate that loss-of-function variants in MAPKAPK5 result in a severe developmental disorder and reveal a major role of this gene in human brain, heart, and limb development.We are grateful to patients and their parents for their participation in this study. The work at IIB was financially supported by the Spanish Ministry of Science, Innovation and Universities (PID2019-105620RB-I00/AEI/10.13039/501100011033 and SAF2016‐75434‐R (AEI/FEDER, UE)

    3D assessment of intervertebral disc degeneration in zebrafish identifies changes to bone density that prime disc disease

    Get PDF
    Abstract Back pain is a common condition with a high social impact and represents a global health burden. Intervertebral disc disease (IVDD) is one of the major causes of back pain; no therapeutics are currently available to reverse this disease. The impact of bone mineral density (BMD) on IVDD has been controversial, with some studies suggesting osteoporosis as causative for IVDD and others suggesting it as protective for IVDD. Functional studies to evaluate the influence of genetic components of BMD in IVDD could highlight opportunities for drug development and repurposing. By taking a holistic 3D approach, we established an aging zebrafish model for spontaneous IVDD. Increased BMD in aging, detected by automated computational analysis, is caused by bone deformities at the endplates. However, aged zebrafish spines showed changes in bone morphology, microstructure, mineral heterogeneity, and increased fragility that resembled osteoporosis. Elements of the discs recapitulated IVDD symptoms found in humans: the intervertebral ligament (equivalent to the annulus fibrosus) showed disorganized collagen fibers and herniation, while the disc center (nucleus pulposus equivalent) showed dehydration and cellular abnormalities. We manipulated BMD in young zebrafish by mutating sp7 and cathepsin K, leading to low and high BMD, respectively. Remarkably, we detected IVDD in both groups, demonstrating that low BMD does not protect against IVDD, and we found a strong correlation between high BMD and IVDD. Deep learning was applied to high-resolution synchrotron µCT image data to analyze osteocyte 3D lacunar distribution and morphology, revealing a role of sp7 in controlling the osteocyte lacunar 3D profile. Our findings suggest potential avenues through which bone quality can be targeted to identify beneficial therapeutics for IVDD

    FAM46A mutations are responsible for autosomal recessive osteogenesis imperfecta

    No full text
    [Background]: Stüve-Wiedemann syndrome (SWS) is characterised by bowing of the lower limbs, respiratory distress and hyperthermia that are often responsible for early death. Survivors develop progressive scoliosis and spontaneous fractures. We previously identified LIFR mutations in most SWS cases, but absence of LIFR pathogenic changes in five patients led us to perform exome sequencing and to identify homozygosity for a FAM46A mutation in one case [p.Ser205Tyrfs*13]. The follow-up of this case supported a final diagnosis of osteogenesis imperfecta (OI), based on vertebral collapses and blue sclerae.[Methods and results]: This prompted us to screen FAM46A in 25 OI patients with no known mutations. We identified a homozygous deleterious variant in FAM46A in two affected sibs with typical OI [p.His127Arg]. Another homozygous variant, [p.Asp231Gly], also classed as deleterious, was detected in a patient with type III OI of consanguineous parents using homozygosity mapping and exome sequencing. FAM46A is a member of the superfamily of nucleotidyltransferase fold proteins but its exact function is presently unknown. Nevertheless, there are lines of evidence pointing to a relevant role of FAM46A in bone development. By RT-PCR analysis, we detected specific expression of FAM46A in human osteoblasts andinterestingly, a nonsense mutation in Fam46a has been recently identified in an ENU-derived (N-ethyl-N-nitrosourea) mouse model characterised by decreased body length, limb, rib, pelvis, and skull deformities and reduced cortical thickness in long bones.[Conclusion]: We conclude that FAM46A mutations are responsible for a severe form of OI with congenital bowing of the lower limbs and suggest screening this gene in unexplained OI forms.We thank the French Association on Osteogenesis Imperfecta (AOI) for their funding support. Part of this work was financially supported by the Spanish Ministry of Economy and Competitiveness (SAF2013-43365-R/ SAF2016-75434-R to VLRP)Peer reviewe

    Specific variants in WDR35 cause a distinctive form of ellis-van creveld syndrome by disrupting the recruitment of the evc complex and smo into the cilium

    No full text
    © The Author 2015. Published by Oxford University Press. All rights reserved. Most patients with Ellis-van Creveld syndrome (EvC) are identified with pathogenic changes in EVC or EVC2, however further genetic heterogeneity has been suggested. In this report we describe pathogenic splicing variants in WDR35, encoding retrograde intraflagellar transport protein 121 (IFT121), in three families with a clinical diagnosis of EvC but having a distinctive phenotype. To understand why WDR35 variants result in EvC, we analysed EVC, EVC2 and Smoothened (SMO) in IFT-A deficient cells. We found that the three proteins failed to localize to Wdr35 -/- cilia, but not to the cilium of the IFT retrograde motor mutant Dync2h1 -/- , indicating that IFT121 is specifically required for their entry into the ciliary compartment. Furthermore expression of Wdr35 disease cDNAs in Wdr35 -/- fibroblasts revealed that the newly identified variants lead to Hedgehog signalling defects resembling those of Evc -/- and Evc2 -/- mutants. Together our data indicate that splicing variants in WDR35, and possibly in other IFT-A components, underlie a number of EvC cases by disrupting targeting of both the EvC complex and SMO to cilia

    Germline and Mosaic Variants in PRKACA and PRKACB Cause a Multiple Congenital Malformation Syndrome

    No full text
    PRKACA and PRKACB code for two catalytic subunits (Cα and Cβ) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cβ subunits of PKA during human development.This work was partially supported by funding from the Spanish Ministry of Science, Innovation and Universities (SAF2016-75434-R [AEI/FEDER, UE] and PID2019-105620RB-I00/AEI/10.13039/501100011033) to V.L.R.-P. S.S.T. was supported by NIH grant R03TR002947, E.M.F.M. by Kassel graduate school “Clocks”, and A.D.L. by the Italian Ministry of Health (RC-2019). The University of Antwerp supported G.M. and W.V.H. with Methusalem funding (FFB190208) and S.P. with a predoctoral grant. E.B. was supported by The Research Foundation Flanders with a postdoctoral grant (12A3814N). The study was also funded by a National Health and Medical Research Council Program Grant (1091593) to I.E.S., a Practitioner Fellowship (1006110) to I.E.S., a Senior Research Fellowship (1102971) to M.B., and an R.D. Wright Career Development Fellowship (1063799) to M.S.H. B.S.S. and G.L. were supported by Throne Holst Foundation UiO (2019-2021) and Strategic PhD fund by UiO/IMB

    Heterozygous pathogenic variants in GLI1 are a common finding in isolated postaxial polydactyly A/B

    No full text
    Postaxial polydactyly (PAP) is a frequent limb malformation consisting in the duplication of the fifth digit of the hand or foot. Morphologically, this condition is divided into type A and B, with PAP-B corresponding to a more rudimentary extra-digit. Recently, biallelic truncating variants in the transcription factor GLI1 were reported to be associated with a recessive disorder, which in addition to PAP-A, may include syndromic features. Moreover, two heterozygous subjects carrying only one inactive copy of GLI1 were also identified with PAP. Herein, we aimed to determine the level of involvement of GLI1 in isolated PAP, a condition previously established to be autosomal dominantly inherited with incomplete penetrance. We analyzed the coding region of GLI1 in 95 independent probands with nonsyndromic PAP and found 11.57% of these subjects with single heterozygous pathogenic variants in this gene. The detected variants lead to premature termination codons or result in amino acid changes in the DNA-binding domain of GLI1 that diminish its transactivation activity. Family segregation analysis of these variants was consistent with dominant inheritance with incomplete penetrance. We conclude that heterozygous changes in GLI1 underlie a significant proportion of sporadic or familial cases of isolated PAP-A/B
    corecore